Prof/ATMANI NAJIB

1BAC SM BIOF

TD/Arithmétique - Congruences

Exercice1: apprendre à calculer avec les congruences

- 1. Démontrer que 115 ≡ 27 [11] et que $-39 \equiv 27 [11]$
- 2. Trouver un entier naturel n inferieur a 100 qui vérifie : n = 27 [11] et n = 4 [7]
- 3. Combien d'entiers naturels inferieurs a 1000 sont congrus a 27 modulo 11?

Exercice2: Chiffre des unités avec les congruences A l'aide des congruences quel est le dernier

chiffre dans l'écriture décimale de 3^{2015} ?

Exercice3: Déterminer un reste avec les congruences Répondre aux questions suivantes en utilisant les congruences:

- 1. Quel est le reste dans la division euclidienne de $451 \times 6^{43} - 912$ par 7?
- 2. Quel est le dernier chiffre dans l'écriture décimale de 3^{2017} ?

Exercice4: Soit n un entier naturel. Démontrer à l'aide des congruences, que si n^2 est pair alors n est pair.

Exercice5: Savoir si un nombre est divisible par ... à l'aide des congruences

Pour quelles valeurs de l'entier naturel n,

 $3\times4^n+2$ est-il divisible par 11?

Exercice6: Déterminer le chiffre des unités avec les congruences

- 1. Vérifier que $7^4 \equiv 1[10]$
- 2. Quel est le chiffre des (unités dans l'écriture décimale) de 798 ?

Exercice7: Résoudre une équation avec les congruences On considère l'équation (E) : $x^2 - 7y^2 = 3$ où x et y sont deux entiers relatifs.

- 1. Justifier que si le couple d'entiers (x; y) est solution alors $x^2 \equiv 3[7]$
- 2. Déterminer les restes possibles de la division de x^2 par 7.
- 3. En déduire que l'équation (E) n'a pas de solution.

Exercice8: Montrer qu'un nombre est divisible avec les congruences

Démontrer que $4^{4n+2} - 3^{n+3}$ est divisible par 5 $\forall n \in \mathbb{N}$.

Exercice9: Disjonction de cas et congruence

Démontrer en raisonnant par disjonction de cas que, pour tout entier naturel n, l'entier $n \times (n^2 + 5)$ est divisible par 3.

Exercice10 : Critères de divisibilité par 3 et 9 On considère un entier naturel a défini par son écriture décimale : $\overline{a_n a_{n-1} ... a_1 a_0}$ avec $a_n \neq 0$ $a = a_n \times 10^n + a_{n-1} \times 10^{n-1} + ... + a_1 \times 10^1 + a_0$

- 1) Montrer que l'entier a est divisible par 3 si et seulement si la somme de ses chiffres est divisible par 3.
- 2) Montrer que l'entier a est divisible par 9 si et seulement si la somme de ses chiffres est divisible par 9.
- 3) 8176312459102535214621 est-il divisible par 3 ? Par 9 ?

Exercice11 : Critère de divisibilité par 11 On considère un entier naturel a défini par son écriture décimale $a_n a_{n-1} ... a_1 a_0$ avec $a_n \neq 0$. On a

donc: $a = a_n \times 10^n + a_{n-1} \times 10^{n-1} + ... + a_1 \times 10^1 + a_0$

Le rang du chiffre a_k est k

- 1. Démontrer qu'un entier est divisible par 11 si, et seulement si la somme de ses chiffres de rang pair moins la somme de ses chiffres de rang impair est divisible par 11.
- 2. L'entier 619 852 805 est-il divisible par 11 ?

Exercice12: Critère de divisibilité par 7

On admet le critère de divisibilité par 7 suivant : Pour savoir si un entier naturel n est divisible par 7, on s'épare le chiffre des unités de n des autres chiffres et on effectue la différence entre le nombre formé par les autres chiffres et le double du chiffre des unités. L'entier n est divisible par 7, si et seulement si, cette différence est divisible par 7.

- 1. A l'aide de ce critère, déterminer si 4 361 est divisible par 7. Même question avec 542.
- 2. Dans la suite de l'exercice, on propose de démontrer ce critère pour un nombre de trois chiffres. Soit n un entier naturel de trois chiffres dont l'écriture décimale est n = abc avec $a \ne 0$.
- a) Montrer que n = 2a + 3b + c[7]].
- b) On appelle $\,m\,$ l'entier égal a la différence d'écrite dans le critère.

Montrer que $m \equiv 3a + b - 2c[7]$.

- c) En d'enduire que $n-3m \equiv 0[7]$ et $m+2n \equiv 0[7]$
- d) En d'enduire que $m \equiv 0[7]$ si et seulement si $n \equiv 0[7]$ puis conclure.

Pièges et erreurs classiques sur les congruences Indiquer si les affirmations suivantes sont vraies ou fausses, en justifiant :

- 1) Si $a \times b \equiv 0$ [6] alors $a \equiv 0$ [6] ou $b \equiv 0$ [6].
- 2) Si $2x \equiv 4$ [12] alors $x \equiv 2$ [12].
- 3) Si 2x = 4 [12] alors x = 2 [6].
- 4) Si 7 $x \equiv 5$ [3] alors $x \equiv 2$ [3].
- 5) Pour tout entier x, $x^5 \equiv x[4]$.

Exercice13: Déterminer les entiers naturels n pour lesquels $n^2 - 2n$ est divisible par 7.

Exercice14: Résoudre ax = b avec les congruences 1. Compléter la table des restes dans la congruence modulo 9:

$x \equiv$	0	1	2	3	4	5	6	7	8
$4x \equiv$									

Résoudre alors l'équation $4x \equiv 5$ [9]

- 3. En remarquant que 4 × 7 ≡ 1 [9], résoudre sans utiliser de table des restes
- I'équation : $7x \equiv 8$ [9]
- 4. Résoudre enfin l'équation $3x \equiv 6$ [9].

Exercice15 : Démontrer de deux façons

différentes que $\forall n \in \mathbb{N}$, $3^{2^n} - 1$ est un Multiple de 8.

Exercice16 : Compatibilité de l'addition avec les congruences

Soient a, b, c, d et n cinq entiers avec n non nul.

- 1. Montrer que si a \equiv b [n] et c \equiv d [n] alors a + c \equiv b + d [n]
- 2. En d'enduire que si a ≡ b [n] alors a + c ≡ b + c [n] 3. La réciproque de la propriété précédente est-elle vraie ?

Exercice17 : Compatibilité de multiplication avec les congruences

Soient a, b, c, d et n cinq entiers avec n non nul. 1. Montrer que si $a \equiv b [n]$ et $c \equiv d [n]$ alors $ac \equiv bd [n]$

- 2. En déduire que si $a \equiv b [n]$ alors $ac \equiv bc [n]$
- 3. a) Vérifier que $6 \times 5 \equiv 6 \times 7$ [12]
- b) La réciproque de la propriété précédente estelle vraie ?

Exercice18: Compatibilité des puissances avec les congruences

Soient a, b et n trois entiers avec n non nul. 1. Montrer par récurrence que pour tout entier naturel p non nul, si $a \equiv b \lceil n \rceil$

alors on a : $a^p \equiv b^p [n]$.

2. Montrer que $41^{183} \equiv 6[7]$

- 3. a) Vérifier $2^3 = 4^3 [7]$.
- b) Soit p un entier naturel non nul si $a^p \equiv b^p[n]$ a-t-on $a \equiv b[n]$?
- 4. a) A-t-on $2^2 \equiv 2^5 [3]$.
- b) Soit p un entier non nul, si $a \equiv b[n]$, a-t-on $p^a \equiv p^b[n]$?

Exercice19: Suite et congruence

On considère la suite numérique (U_n) définie

- 1. Calculer $U_1;U_2;U_3;U_4$. Quelle conjecture peuton émettre concernant les deux derniers chiffres de U_n ?
- 2. a) Montrer que $\forall n \in \mathbb{N}$ $U_{n+2} \equiv U_n \begin{bmatrix} 4 \end{bmatrix}$. En déduire que : $\forall k \in \mathbb{N}$ $U_{2k} \equiv 2 \begin{bmatrix} 4 \end{bmatrix}$ et $U_{2k+1} \equiv 0 \begin{bmatrix} 4 \end{bmatrix}$
- b) Montrer par récurrence que, $2U_n = 5^{n+2} + 3$ $\forall n \in \mathbb{N}$.
- c) Montrer que, $\forall n \in \mathbb{N}$, $5^{n+2} \equiv 25[100]$
- d) En déduire que, $\forall n \in \mathbb{N}$, $2U_n \equiv 28[100]$.

Déterminer les deux derniers chiffres dans l'écriture décimale de U_n .

Exercice20 : Nombres de Fermat On appelle nombres de Fermat les entiers $F_n = 2^{2^n} + 1$ avec n un entier naturel.

- 1. a) Calculer F_0 , F_1 , F_2 , F_3 et F_4 . Que remarque-t-on?
- b) En 1640, Pierre de Fermat annonce qu'il est persuadé que les nombres F_n sont premiers. A l'aide de la calculatrice, vérifier que 641 divise F_5 Quelle question peut-on se poser ?
- 2. a) Montrer que $\forall n \in \mathbb{N}$, $F_{n+1} = (F_n 1)^2 + 1$.
- b) En déduire par un raisonnement par récurrence que pour n > 2, l''écriture décimale de F_n se termine par un 7.

« c'est en forgeant que l'on devient forgeron » dit un proverbe.

c'est en s'entraînant régulièrement aux calculs et exercices que l'on devient un mathématicien